Hypoxia-Inducible Factor-1α in Smooth Muscle Cells Protects Against Aortic Aneurysms-Brief Report.

نویسندگان

  • Masaki Imanishi
  • Yoichi Chiba
  • Noriko Tomita
  • Shinji Matsunaga
  • Toshitaka Nakagawa
  • Masaki Ueno
  • Kazuhiro Yamamoto
  • Toshiaki Tamaki
  • Shuhei Tomita
چکیده

OBJECTIVE The purpose of this study was to determine the role of smooth muscle cell-derived hypoxia-inducible factor-1α (Hif-1α) in the pathogenesis of aortic aneurysms. APPROACH AND RESULTS Control mice and smooth muscle cell-specific hypoxia-inducible factor-1α-deficient mice were infused with β-aminopropionitrile for 2 weeks and angiotensin II for 6 weeks to induce aortic aneurysm formation. Mutant mice experienced increased levels of aneurysm formation of the thoracic or abdominal aorta with more severe elastin disruption, compared with control mice. Smooth muscle cell-specific hypoxia-inducible factor-1α deficiency did not affect matrix metalloproteinase-2 activity; however, the activity of lysyl oxidase and the levels of tropoelastin mRNA in the angiotensin II- and β-aminopropionitrile-treated aortae, associated with elastin fiber formation, were suppressed. Furthermore, we observed reduced volumes of mature cross-linked elastin in the thoracoabdominal aorta after treatment with angiotensin II and β-aminopropionitrile. CONCLUSIONS Deficiency of smooth muscle cell-derived hypoxia-inducible factor-1α augments aortic aneurysms, accompanied by disruption of elastin fiber formation, but not changes of elastin fiber degradation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Inhibiting miR-155 protects against myocardial ischemia/reperfusion injury via targeted regulation of HIF-1α in rats

Objective(s): The aim of this study was to identify the role of miR-155 in the myocardial ischemia/reperfusion (I/R) injury through targeting hypoxia-inducible factor 1-alpha (HIF-1α). Materials and Methods: We constructed rat models with myocardial I/R injury and H9C2 cell models with hypoxia/reoxygenation (H/R) damage. Anti-miR-155 and...

متن کامل

Activation of hypoxia-inducible factor-1 in pulmonary arterial smooth muscle cells by endothelin-1.

Numerous cellular responses to hypoxia are mediated by the transcription factor hypoxia-inducible factor-1 (HIF-1). HIF-1 plays a central role in the pathogenesis of hypoxic pulmonary hypertension. Under certain conditions, HIF-1 may utilize feedforward mechanisms to amplify its activity. Since hypoxia increases endothelin-1 (ET-1) levels in the lung, we hypothesized that during moderate, prolo...

متن کامل

Hypoxia-inducible factor-1α in pulmonary artery smooth muscle cells lowers vascular tone by decreasing myosin light chain phosphorylation.

RATIONALE Hypoxia-inducible factor-1α (HIF-1α), an oxygen (O2)-sensitive transcription factor, mediates transcriptional responses to low-O2 tension states. Although acute hypoxia causes pulmonary vasoconstriction and chronic hypoxia can cause vascular remodeling and pulmonary hypertension, conflicting data exist on the role of HIF-1α in modulating pulmonary vascular tone. OBJECTIVE To investi...

متن کامل

Blockade of Hypoxia: The Impact on Tumor Growth in an Experimental Tumor Model

Background: Tumor microenvironment is an active factor participating in immunoregulation, thereby preventing immunosurveillance and limiting the efficacy of anticancer therapies. Hypoxia as a major characteristic of solid tumors causes the expression of Hypoxia-Inducible Factor-1α (HIF-1α). This is a transcription factor that mediates hypoxic responses of tumor cells and involves in the express...

متن کامل

Hypoxia stimulates the proliferation of neonatal rat vascular smooth muscle cells through activation of hypoxia-inducible factor-1α.

Exposure to an adverse intrauterine environment increases the risk of cardiovascular disease later in adult life. It has been shown that hypoxia plays a critical role in vascular remodeling and directly affects vascular smooth muscle cells functions. In the present study, we aimed to investigate the effect of hypoxia on neonatal rat aorta smooth muscle cells (NRSMCs). Our study demonstrated tha...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Arteriosclerosis, thrombosis, and vascular biology

دوره 36 11  شماره 

صفحات  -

تاریخ انتشار 2016